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Abstract

A nonlinear version of the Liouville equation based upon terminal attractors is proposed for describing post-insta-

bility motions of dynamical systems with exponential divergence of trajectories such as those leading to chaos and tur-

bulence. As a result, the post-instability motions are represented by expectations, variances, and higher moments of the

state variables as functions of time. The proposed approach can be applied to conservative chaos, and in particular, to

n-bodies problem, as well as to dissipative systems, and in particular, to chaotic attractors and turbulence.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematical formalism of nonlinear dynamics does not discriminate between stable and unstable motions, and

therefore, an additional stability analysis is required for that. However, such an analysis is not constructive: in case

of instability, it does not suggest any model modifications to efficiently describe post-instability motions. The most

important type of instability, that necessitates post-instability description, is associated with positive Lyapunov expo-

nents leading to exponential growth of small errors in initial conditions (chaos, turbulence). The approach proposed in

this paper is based upon the removal of positive Luapunov exponents by introducing special control forces represented

by terminal attractors. The role of these forces is to suppress the divergence of the trajectories corresponding to initial

conditions that are different from the prescribed ones without affecting the ‘‘target’’ trajectory that starts with the pre-

scribed initial conditions. Since the terminal attractors include expected values of the state variables as new unknowns,

the corresponding Liouville equation should be invoked for the closure. This equation is different from its classical ver-

sion by additional nonlinear sinks of the probability represented by terminal attractors.
2. Representation of expected values of state variables

Consider a system of n first order ordinary differential equations with n unknowns x1(t), . . . ,xn(t):
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E-m
_x_i ¼ fi½fxðtÞg; t�; fxg ¼ x1; . . . xn; i ¼ 1; 2; . . . ; n: ð1Þ
subject to initial conditions
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xið0Þ ¼ x0
i : ð2Þ
Due to finite precision, the values (2) are not known exactly, and we assume that the error possesses some joint

distribution
ErrðX 0
i Þ ¼ P ðX 0

1; . . . ;X
0
nÞ ¼ P 0: ð3Þ
It is reasonable to assume that the initial conditions (2) coincide with the initial expectations i.e. that P0 has a maximum

at X 0
i ¼ x0

i ; i ¼ 1; 2; . . . ; n. This means that
oP 0

oX 0

¼ 0;
o2P 0

oX ioX j
< 0; i ¼ 1; 2; . . . ; n: ð4Þ
This is true for any symmetric initial density (for instance, the normal distribution) when the expected values have the

highest probability to occur. The Liouville equation describing the evolution of the joint density P is [1]
oP
ot

þr 
 ðPf Þ ¼ 0; f ¼ f1; . . . ; fn; fi ¼ fiðfXg; tÞ; P ¼ P ðfXg; tÞ: ð5Þ
Its formal solution
P ¼ P 0 exp �
Z t

0

r 
 f ds

� �
ð6Þ
suggests that the flattening of the error distribution is caused by the divergence of the trajectories of the governing Eqs.

(1) from the target trajectory that starts with the prescribed initial conditions (2), Fig. 1a. Let us introduce the following

control forces into Eqs. (1)
F ii ¼ ciðhX ii � xiÞ1=3; ci ¼ const > 0: ð7Þ
Here
hX ii ¼
Z 1

�1
X iP dX 1; . . . ; dXn ð8Þ
is the expected value of xi, and ci are scaling parameters that have dimensionalities matching those of fi. Adding the

terminal attractor (7) to Eqs. (1), one arrives at the governing equations of the controlled dynamics
_xi ¼ fiðfxg; tÞ þ ciðhX ii � xiÞ1=3; i ¼ 1; 2; . . . ; n: ð9Þ
As follows from Eqs. (7) and (8), the control forces depend upon the density functionals rather than the density func-

tion. The control forces possess two important properties. Firstly, they vanish at xihxii, and therefore, they do not affect

the target trajectory. Secondly, their derivatives become unbounded at the target trajectory:
oF i

oxi

����
���� ¼ 1

3
ð< X i > �xiÞ�2=3

����
���� ! 1 at xi ! hxii ð10Þ
and that makes the target trajectory infinitely stable since
o _xi
oxi

! 1 at xi ! hxii; i ¼ 1; 2; . . . ; n ð11Þ
Fig. 1. Divergence of trajectories.
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for any functions fi as long as they satisfy the Lipschitz conditions. In other words, the target trajectory x = hx(t)i be-

comes a terminal attractor. The terminal attractor was introduced and investigated in our earlier works [2,3]. As shown

there, this attractor is not only infinitely stable, but it is intersected by all the attracted transients, and therefore, it pro-

vides an infinitely large compression of the family of the trajectories in the neighborhood of the target trajectory. All

these properties result from the relaxing the Lipschitz conditions (11) due to a special form of the control forces (7).

Obviously the system (9) is not closed yet since it includes expectations hxii as additional unknowns. For their clo-

sure one has to invoke the corresponding Liouville equation that includes the control forces (7)
oP
ot

¼ �
Xn

i¼1

o

oX i
fP ½fi þ ciðhX ii � X iÞ1=3�g: ð12Þ
At the limit xi!hXii, one can ignore the functions fi due to terminal properties of the control forces (7) and (12) is

decomposed into n independent equations:
oP 0
i

ot
¼ �ci

oP 0
i

oX i
ðhX ii � X iÞ1=3 at X i ! hxii; ð13Þ
where P 0
iðX iÞ are the independent densities, and
PðX 1; . . . ;XnÞ ¼
Yn
i¼1

P 0
iðX iÞ at X i ! hxii: ð14Þ
Although Eq. (14) are nonlinear with respect to the densities P 0
i, one can write their formal solutions as
P 0
i ¼ P 0

i0ðX i ! hX iiÞ exp
ci
3

Z t

0

ðhX ii � X iÞ�2=3
dt

� �
! dðX i � hX iiÞ; ð15Þ
where
P 0
i0 ¼ P 0

iðX i ¼ X i0Þ: ð16Þ
Hence with the probability one the solution to Eq. (12) approaches the target trajectory
hX ii ¼ hX iðtÞi ð17Þ
regardless of the fact that the original dynamical system may be chaotic. This suggests that if our objective would be to

control the chaos, then the Liouville equation (12) should be implemented as an additional control device that is cou-

pled with the original dynamical system (9) via the control force (7), and the target trajectory will be preserved, Fig. 1b.

However, our objective is more general, namely, to obtain the complete stochastic structure of chaos, and therefore, the

evolution of the expected values of the state variables is the first step in our approach.

It should be recalled that the target trajectory has been identified with the expected trajectory, and the latter is usu-

ally unknown in advance in chaotic systems: it can be found only as a result of the solution to Eq. (12) (but not of the

solution to the non-controlled version (6) which is chaotic). In order to clarify that and to illuminate the mechanism of

stabilization by a terminal attractor, let us consider a very simple exponentially unstable linear equation
_x ¼ x: ð18Þ
In this particular case, the expected trajectory is known in advance:
hX i ¼ 0: ð19Þ
However, any small error in initial conditions leads to a different trajectory that diverge exponentially from those in Eq.

(19):
x ¼ x0 exp t; ð20Þ
Similar result follows from the corresponding Liouville equation:
oP
ot

¼ � o

oX
ðPX Þ; hX i ¼ hX 0i exp t: ð21Þ
Let us now introduce the control force (7) that, in view of Eq. (19) should be
F ¼ �cx1=3; c � 1: ð22Þ
Then the controlled version of the original dynamical system (28) is
_x ¼ x� cx1=3: ð23Þ
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For the values of x of the order of 1, the control force can be ignored. But when x is close to the target trajectory, x� 1,

the control force is dominating, and the solution to Eq. (23) consists of a regular solution
x ¼ x2=3
o � 2

3
ct

� �3=2

ð24Þ
and a singular solution
x � 0: ð25Þ
Regardless of the value of the initial conditions x0 � 1, the regular solution (24) approaches the singular solution (25),

i.e. the target trajectory, in a finite time
T ¼ 3

2c
x2=3

0 ð26Þ
and both solutions coexist for t > T. Therefore, an exponential growth of initial errors is totally eliminated. It should be

noticed that the coexistence of solutions with different initial conditions as well as a finite time of approaching an equi-

librium are special properties of the terminal attractors reported in [2,3]. One has to recall again that although the exam-

ple we just discussed is much simpler than chaos, the stabilization mechanism performed by the terminal-attractor-

based control forces is the same.
3. Representation of higher moments

Although expected values of the state variables play an important role in description of post-instability motions,

they do not expose the full dynamical picture, and the behavior of the higher moments is required. For that purpose,

let us turn to Eq. (1) and introduce new variables
xij ¼ xixj: ð27Þ
After trivial transformations, the system (1) can be rewritten in an equivalent form being expressed via new variables
_xij ¼ fijðx11; . . . ; xnnÞ ð28Þ
in which
fij ¼
ffiffiffiffiffi
xjj

p
fið

ffiffiffiffiffiffi
x11

p
; . . . ;

ffiffiffiffiffiffi
xnn

p Þ þ ffiffiffiffiffi
xii

p
fjð

ffiffiffi
x

p
11; . . . ; xnnÞ: ð29Þ
Let us now augment Eq. (28) with the control forces similar to (7)
_xij ¼ fijðx11; . . . ; xnnÞ þ ciðxij � hX ijiÞ
1
3: ð30Þ
Then the corresponding Liouville equation will be similar to (12)
oP 0

ot
¼ �

Xn

i¼1

o

oX i
P 0½fji þ cijðhX iji � X ijÞ1=3�

n o
: ð31Þ
Solving Eqs. (30) and (31) simultaneously (compare to the system (9) and (12)), one obtains the evolution of the expec-

tations of the new state variables that are equivalent to the second moments of the old variables (see Eq. (27))
hX iji ¼ hX iX ji: ð32Þ
It should be noticed that P and P 0 are different: for instance, if initially P is normally distributed, P 0 must be recalcu-

lated by applying the rules for the change of variables (27); that is why the expectations and the second moments must

be found from different equations.

The higher moments can be found in a similar way by introducing new variables xijk,xijkl, etc.

Based upon the expectation and higher moments, one can reconstruct the joint probability distribution of state var-

iables, and therefore, to obtain a complete information about dynamics of the underlying physical process in a stable

form.
4. Computational strategy

In order to solve Eq. (12), we will apply a small-time-steps strategy. Linearizing Eq. (9) with respect to the initial

values of the state variables xi during a small period of time t, one obtains
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_xi ¼ fiðx0
1; . . . ; x

0
nÞ þ ciðhX 0

i i � x0
i Þ

1
3 þ

X
j

ofi
oxj

jxi¼x0
i
xj �

1

3
ciðhX 0

i i � x0
i Þ

�2
3xi: ð33Þ
During the same period Dt, the corresponding Liouville equation (12) reads
oP
ot

¼ �
Xn

i¼1

fiðx0
1; . . . x

0
i Þ þ ciðhX 0

i i � x0
i Þ

1
3

h i o

oX i
ðPÞ þ

X
j

ofi
oxj

" �����
xj¼x0

j

� 1

3
ciðhX 0

i i � x0
i Þ

�2
3

#
o

oX i
ðPX iÞ

8<
:

9=
;: ð34Þ
This equation can be reduced to the system of ODE. For that purpose, let us multiply Eq. (34) by Xi and integrate over

the whole space assuming that
P ! 0; PX i ! 0 at jX ij ! 1: ð35Þ
Then Eq. (34) reduces to the following system of ODE with respect to expectations hXii
h _X ii ¼ AijhX ji þ Bi ð36Þ
in which the vector
Bi ¼ fiðx0
1; . . . x

0
nÞ þ ciðhX 0

i i � x0
i Þ

1
3 ð37Þ
and the matrix
Aij ¼
ofi
oxj

����
xj¼x0

j

� 1

3
ciðhX 0

i i � x0
i Þ

�2
3dij; dij ¼

1; if i ¼ j;

0; if i 6¼ j:

�
ð38Þ
The solution to Eq. (36) for the selected small interval Dt describing the evolution of expectations of the state variables

can be written in the following closed form:
hX i ¼ ðhX 0i � A�1BÞ expðAtÞ þ A�1B: ð39Þ
Substituting t = dt into the solution (39), one finds the values of the expectations at the end of the initial interval. Taking

these values as the initial conditions for the next small interval, one continues the computational process in a similar

way.

Let us discuss the role of the control forces (7). It is reasonable to assume that initial error, i.e. the difference between

the initial value of a state variable and its initial expected value is small
jhX ii � xij � 1: ð40Þ
This means that the contribution of these forces into the vector (37) can be ignored. However, the contribution of the

same forces into the diagonal components of the matrix (38) is dominating since the gradient of these forces is inversely

proportional to the error. As a result, fore a very small error, all the diagonal terms become negative with large absolute

values, and that suppresses all the positive characteristic roots of the matrix (38). This means that small errors do not

grow, and therefore, the trajectories that are sufficiently close to the target trajectory do not diverge. The boundary

between the area of diverging and converging trajectories is controlled by the weights ci of the control forces whose

optimal choice is problem-specific.

The same computational strategy is applicable for representation of the higher moments (see Eqs. (30) and (31)).
5. Discussion and conclusion

Thus, a nonlinear version of the Liouville equation is proposed for describing post-instability motions of dynamical

systems with exponential divergence trajectories such as those leading to chaos and turbulence. The approach is based

upon introduction of stabilizing control forces that couple equations of motion and the evolution of the probability

density of errors in initial conditions. These stabilizing forces create a powerful terminal attractor in the probability

space that corresponds to occurrence of the target trajectory with the probability one. In configuration space, this effect

suppresses exponential divergence of the close-neighboring trajectories without affecting the target trajectory. As a re-

sult, the post-instability motion is represented by a set of functions describing the evolution of the statistical invariants

such as expectations and higher moments, while this representation is stable. General analytical proof as well as a com-

putational strategy has been introduced. Since the proposed approach is not restricted by any special assumptions
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about the original dynamical system, it can be applied to both conservative and dissipative systems. For conservative

systems the control forces must be introduced in the form of the potential
P ¼
X
i

cðhX ii � xiÞ
4
3: ð41Þ
In this case the controlled version of the system remains conservative, and it can be applied to problems displaying con-

servative chaos such as in celestial mechanics (for instance, many-body problems). The broad class of dissipative sys-

tems to which the proposed approach can be applied includes chaotic attractors and turbulence. In the case of

turbulence, prior to application of the proposed methodology, the Navier–Stocks equation must be approximated

by a system of ODE. Such an approximation can be performed using finite differences, finite elements, or the Galerkin

method.

It should be noticed that the proposed approach combines several departures from the classical methods. Firstly, it

introduces a nonlinear version of the Liouville equation that is coupled with the equation of motion (in Newtonian

dynamics they are uncoupled). General properties of such systems were discussed in [4]. Secondly, it introduces terminal

attractors characterized by violation of the Lipschitz conditions (in Newtonian dynamics as well as in theory of differ-

ential equations these conditions are preserved). The theory of non-Lipschitz dynamics was discussed in [2,3]. Finally,

the idea of a forced stabilization of unstable equations follows from the stabilization principle introduced in [5].
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